
Chapter 1 - Getting to know
Greenfoot

Acknowledgement: Michael Kolling & Bruce Chittenden

Greenfoot Resources
• Web site

– http://www.greenfoot.org

• Scenarios

– http://www.greenfoot.org/scenarios
/index.html

• Tutorial

– http://www.greenfoot.org/doc/tutori
al.html

• Book: Introduction to Programming with
Greenfoot by Michael Kölling

http://www.greenfoot.org/
http://www.greenfoot.org/scenarios/index.html
http://www.greenfoot.org/scenarios/index.html
http://www.greenfoot.org/doc/tutorial.html
http://www.greenfoot.org/doc/tutorial.html

Desktop Icon

C:/Program Files/Greenfoot/greenfoot.exe

1.1 Getting Started

World

Class
Diagram

Execution
Controls

World

• A Finite space where
our program runs.

• Space where we can
introduce some actors

• Allow actors to Interact

Class Diagram

• Shows Classes involved
in the scenario

• Classes define general
characteristics or
behavior of a group

• Characteristics that are
easily differentiable

• Is-A-
Relationship

• Subclass
relationship

Diagram
contains Boxes
called Class
boxes

• WombatWorld is a subclass
of World

• Wombat is a subclass for
Actor

• Leaf is a subclass of Actor
• Leaf is not a subclass of

Wombat
• Actor is the super class of

Leaf and Wombat

Class Hierarchy

Teacher Student

Humans

Mammals food()
drink()

think()
react()

enroll ()
study()

submit_Assignments()

teach ()
evaluate()

prepare_Assignments()

1.2 Objects and Classes

Right Click on Wombat

Click New Wombat()

Drag to World

Multiple Objects

• We can create
multiple
instances of
same class

Exercise 1.1

1.3 Interacting with Objects

• Wombat has
certain
function of its
own

• And Certain
function
inherited
from Actor
class

Interacting with Objects

Invoke the Move method

Right Click on the Wombat

1.4 Return Types

Exercise 1.3

Exercise 1.3

Exercise 1.4

1.5 Parameters

Exercise 1.5

Exercise 1.5

Exercise 1.5

1

3

2

0

Exercise 1.5

Parameter > 3
Does Nothing

Exercise 1.5

Non-Integer
Returns Error

1.6 Greenfoot Execution

Exercise 1.6

Exercise 1.6

Wombat Moves toward the Leaves

Exercise 1.6

Wombat Moves to Leaves

Example 1.7

Wombat Eats Leaf

Exercise 1.8

Exercise 1.8

The >Act Execution Control
Affects All the Wombats

Exercise 1.9

Wombat Runs Around
the Edge of the World

Exercise 1.9

• Act Method

– If we’re sitting on a leaf, eat the leaf

– Otherwise, if we can move forward, move forward

– Otherwise, turn left

1.7 A Second Example

1.8 Understanding the Class Diagram

World Class is always there in Greenfoot scenarios, it
is built-in. Space represents a specific world for this
scenario

Arrows show relationships

Explosion and Mover are subclasses of Actor

Bullet, Rocket, and Asteroid are subclasses of Mover.

Vector is a helper class

1.9 Playing with Asteroids

Start Playing by Creating Some Actor Objects
(Objects of the Subclass of Actor). Create Objects
for Rocket, Bullet, Asteroid, and Explosion

Exercise 1.10

Right Click on the Object

Exercise 1.10

Click on setGunReloadTime
and Type 5

Exercise 1.11

Right Click on the Object
and Select Inspect

Exercise 1.11

Right Click on the Object
and Select Inspect

Exercise 1.12

Right Click on the Object
and Select getSpeed ()

Exercise 1.12

Exercise 1.13

Exercise 1.14

Right Click on the Object
and Select setSize(int Size)
and Set the Size to 256

1.10 Source Code

Right Click on the Class
and Select Open editor

Source Code for Rocket

Exercise 1.15

Change gunReloadTime
from 20 to 5

Exercise 1.15

Exercise 1.15

Class Changed Class Compiled

1.11 Summary

In this chapter, we have seen what Greenfoot scenarios
can look like and how to interact with them. We have
seen how to create objects and how to communicate
with these objects by invoking their methods. Some
methods are commands to objects, while other methods
return information about the object. Parameters are
used to provide additional information to methods, while
return values pass information back to the caller.

Concept Summary

