Chapter 1 - Getting to know
Greenfoot

Greenfoot Resources

Web site
— http://WWW.greenfOOt.Org Introduction to Programming
Scenarios Greenfoot
— http://www.greenfoot.org/scenarios i Gomes and Simtions
/index.html s Al
Tutorial
— http://www.greenfoot.org/doc/tutori
al.html
Book: Introduction to Programming with Mictasliailhg

Greenfoot by Michael Kolling

http://www.greenfoot.org/
http://www.greenfoot.org/scenarios/index.html
http://www.greenfoot.org/scenarios/index.html
http://www.greenfoot.org/doc/tutorial.html
http://www.greenfoot.org/doc/tutorial.html

Desktop Icon

rid

Greenfoot

C:/Program Files/Greenfoot/greenfoot.exe

1.1 Getting Started

4ﬁiéafcl)lct: womblat%' q ;-:ﬂ~-:h

Scenario Edit Controls Help

[@ Scenario Information]
wombatWorld

World classes

World
AN
WombatWorld

Actor classes

|
|

|
World ekl ! 3 T 7 ’

o8 vorin]

Class
Diagram

Execution
Controls

N [(>Act | [prn | [OReset | Spesd: U il = |

A Finite space where

our program runs.

Space where we can
introduce some actors
Allow actors to Interact

Class Diagram g

contains Boxes

called Class
Is-A- Waorld dasses 010) (=15

Relationship World

Subclass Ny
relationship WombatWorld

Actor dasses

Actor
¥ Wombat Shows Classes involved
WombatWorld is a subclass in the scenario
of World # Leaf Classes define general

Wombat is a subclass for
Actor

Leaf is a subclass of Actor
Leaf is not a subclass of

characteristics or

behavior of a group
Characteristics that are

easily differentiable
Wombat

Actor is the super class of
Leaf and Wombat

Class Hierarchy

Mammals [[food() J
drink()

) 4
teach () enroll ()
evaluate() | Teacher Student |[H. study()
prepare_Assign ments()) \submit_Assignments()

Right Click on Wombat

"1 Actor

I

% Wombat |

& Leaf

1.2 Objects and Classes

/B

new Wombat()

Open editor \

Setimage...

Inspect
Femaove

Mew subclass...

"i Actor

I

&% Wombat

& Leaf

&

Click New Wombat()

ae

o

Drag to World

Multiple Objects

* We can create
multiple

instances of
same class

Exercise 1.1

b Greenfoot: leaves-and-wombats

Scenario Edit Controls Help

wombatWorld

i“ ’

>

m

[>at | [pron | [©OReset | Speed: | U

[2) Scenario Information

World dasses

World

Zﬁ WombatWorld

Actor dasses

4 Actor

@& Wombat

& Leaf

Compile all

1.3 Interacting with Objects

_I.____I.____l.____l.____l.____l.____l.____

| ' : S B | ~
inherited from Actor \ P(void act() [redefined in Wombat]

Greenfootimage getimage()

void act()

int getRotation .

Wombat h boolean canMove()] 0 And Certain
® ompbat nas World getWorld .

tai void eatLeaf() : 0 function

int getX

CErtdif boolean foundLeaf() getxd

i i int gety
funCtlon Of Its int getLeavesEaten() getr()

own . void move(int)
void move()

inherited
from Actor
class

void setlmage(Greenfootimage)

i void setDirection(int direction)

void setimage(Strin
i void turnLeft() ge(5tring)

void setLocation(int, int)
Inspect void setRotation(int)

\\ Remove) \vnid turn{int) /

Interacting with Objects

Right Click on the Wombat

@ inherited from Object 4 Invoke the Move method
' inherited from Actor » |
void act()

boolean canMove()
void eatlLeaf()
boolean foundLeaf()
int getLeavesEaten
void move()
void setDirection(int direction)
void turnLeft()

Inspect

Remove

1.4 Return Types

Greenfoot: Method Resu =

i Test if we can move forward. Return true if we can, false otherwise.
boolean canMove()

wombat_4.canMove() | Inspect |

returned:
et

boolean true

Exercise 1.3

3 et 000, EEs]

Scenario Edit Controls Help

[[3) Scenario Information]
wombatWarld

[»

World dasses

World

ﬂ % WombatWorld

Actor dasses

% Gt Method et S ol
— 'ﬁ Actor

& Test if we can move forward. Return true if we can, false otherwise.
boolean canMove()

wombat_2.canMave() Inspect # Leaf

turned:
returne —
boolean

% Wombat

@

[>act | [DR | [QReset | specd Conpie a

Exercise 1.3

‘% Greenfoot: Ieaves—an_d

Scenario Edit Controls Help

[2) Scenario Information

wombatWorld

™

World dasses

World

“ Aﬁ WombatWorld

Actor dasses

4 4 Actor
/ Testif we can move forward. Return true if we can, false otherwise. | &% Wombat
boolean canMove()
, Leaf
wombat_2.canMove() [Inspect | &

returned:
boolean |

| _l

| >act | [prRun | | @QReset | Speed:

Compile all

el

Exercise 1.4

‘ Greenfoot: Ieaves-anfi-wgmpg_tg

Scenario Edit Controls Help

wombatWorld

@ s

" Greenfoot: Method Result licx i{E)|msdom]

T N
B

Tell how many leaves we have eaten
int getleavesEaten()

wombat_2.getleavesEaten() “”_mspect [
returned: 'T

Get [

m

[2) Scenario Information

[>aAct | [pRun | [@Reset | Speed: U

World dasses

World

ﬁ;— WombatWorld

Actor dasses

A Actor

@ vomomt

& Leaf

Compile all

1.5 Parameters

Greenfoot: Method Call

& Sets the direction we're facing. The direction’ parameter must
& be in the range [0..3].
void setDirection(int direction)

wombat_4.setDirection {

Exercise 1.5

Scenario Edit Controls Help

[2) Scenario Information

wombatWorld

World classes

World

ZP— WombatWorld

I) I i 1) : Actor classes

&, Greenfoot: Method Call A
4 Actor

/f Sets the direction we're facing. The 'direction’ parameter must &F Wombat
// be in the range [0..3].
void setDirection(int direction) & Leaf

wombat_S.setDirection (ER -)

[> Act][’Run] [Q;set] Speed:

Exercise 1.5

8 Greenfoot: leaves-and
| Scenario Edit Controls Help

[2) Scenario Information

wombatWorld

>

3 World dasses

World

AE WombatWorld

Actor classes

4 Actor

Af &¥ Wombat
& Leaf

m

J

| >act | [pRun | [@)Reset | Speed: Compile al

Exercise 1.5

Exercise 1.5

reenfoot: leaves

=TT =)
Scenaric Edit Controls Help
l @ Scenario Information l
wombatWorld
B World classes
Parameter >3 World

ﬂ Does Nothing Tf Wombatworld

| | \ | | |
™ Greenfoot: Method Call

Actor classes

"'i Actor

T ¥ Wombat
& Leaf

+ A Sets the direction we're faci
& be in the range [0._3].
void setDirection{int direction)

[>ac | [prn | [QResst | Speedt U

Compile all

Exercise 1.5

Scenario Edit Controls Help

=g

X

wombatWorld

Non-Integer

ﬂ Returns Error
e -

be in the range [0..3].
void setDirection(int direction)

|

wombat_6.setDirection (12,5

possible loss of precision

>

[3) scenario Information

World dasses

World

ol

WombatWorld

" Actor

@ Wombat

& Leaf

Compile all

N

1.6 Greenfoot Execution

| - Act | | P Run | |) Reset | Speed: U

Exercise 1.6

i ‘ Greenfoot: leaves-and

|| Scenario Edit Controls Help

[2) Scenario Information

wombatWorld

>

i World dasses

World

AE WombatWorld

Actor classes

4 Actor

Af @& Wombat
© s

m

<

[> Act] [P Run] [) Reset] Speed: Compie

Exercise 1.6

‘ Gréenfoot: leaves-and-wombats @m

| Scenario Edit Controls Help
wombatiorld | [y Scenario Informatn
- World dasses
Wombat Moves toward the Leaves World
/ AE WombatWorld

m

Actor dasses
\[’ 4 Actor
ZE @ Wombat

“ ’ & Leaf

V' 4

-

{>A‘t][>Run][OReset] Speed:

Compile all

Exercise 1.6

i ‘ Greenfoot: leaves-and

kI Scenario Edit Controls Help Ix

[2) Scenario Information

wombatWorld
i World dlasses
World
e e X, gt el e
—Wombat Moves to Leaves
AE WombatWorld

\ Actor classes

4 Actor

Af & Wombat
a & Leaf

m

<

[> Act] [P Run] [) Reset] Speed: Compie

Example 1.7

i ‘ Greenfoot: leaves-and

| Scenario Edit Controls Help

[) Scenario Information

wombatWorld
1 ' = World dasses
PP 2 i ' A 4 World
~ Wombat Eats Leaf
zﬁ WombatWorld

l

i Actor dlasses

} | \ & Actor
| T @& Wombat
! “ | # Leaf
|

|

|

l

|

|

|

R

| -

(@

| >act | [pRun | | QReset | Speed: ' T

Exercise 1.8

|

R R

Scenaric Edit Centrols Help

wombatWorld

Gy
I 4

A

m

[2) Scenario Information

[> Act] [P Run] [) Reset] Speed:

<

World dasses

World

lli WombatWorld

Actor dasses

4 Actor

AE @¥ Wombat
& Leaf

Compile all

1

Exercise 1.8

‘ Greenfoot: Ieav_es—and;yv&mbaﬁ.

|| Scenaric Edit Centrols Help

[2) Scenario Information

wombatWorld
| — World dasses
!. The >Act Execution Control T
Affects All the Womths R T
! Actor dasses
ya] L 4 Actor
i) PN

’ & Leaf

Compile all

Exercise 1.9

™, Greenfoot: leaves-and-wombats \Li

|| Scenario Edit Controls Help

‘ [% Scenario Information

wombatWorld
\ ‘ \ ‘ \

| | | | | World dasses
| ‘ } ‘ | ‘ }

RS ’ *'debat%fRuns"ArourfId*'*”"y FET ’ Frd = =
- the Edge of the World | il

World

Actor classes

" Actor

ZE &¥ Wombat
& Leaf

Exercise 1.9

* Act Method
— If we're sitting on a leaf, eat the leaf
— Otherwise, if we can move forward, move forward
— Otherwise, turn left

1.7 A Second Example

M Greenfoot: asteroidsl

Scenaric Edit Controls Help

| >act | | pRun

| | &) Reset |

space

- W ==

| @ Scenario Information

World

T Space

" Actor

Explosion

Mowver

Bullet

= Rocket

5 Asteroid

Vector

4 1) F

m

| Compile all

1.8 Understanding the Class Diagram

World Class is always there in Greenfoot scenarios, it

world | < is built-in. Space represents a specific world for this
Actor dasses / Arrows show relationships

‘%/@nsmn |___— Explosion and Mover are subclasses of Actor

Mover

- Bullet

/ Bullet, Rocket, and Asteroid are subclasses of Mover.

= Rocket

&5 Asteroid

Vector is a helper class

A

Vector

1 | mn [P

1.9 Playing with Asteroids

" Greenfoot: asteroidsl

Start Playing by Creating Some Actor Objects
(Objects of the Subclass of Actor). Create Objects
for Rocket, Bullet, Asteroid, and Explosion

|

Scen

aric Edit Controls Help

| >at | [pRun

Exercise 1.10

M Greenfoot: asteroids1 |.E|E|-£—§'-J

Scenario Edit Controls Help

| @ Scenario Information |

space

World

éE Space

4 Actor
Explosion 2
inherited from Object Mover
inhented from Actor
inherited from Mover Bullet
void act) = Rocket
int getShotsFired() &0 Asteroid

int getSpeed()

void setGunReloadTime(int reloadTime)

Inspect Vector i

4 Ir 3
Remowve

| >act | | pRun | | @Reset | Speed: UJ |

Compile all

Exercise 1.10

"4 Greenfoot: asteroidsl == |

‘ @ Scenario Information

space

World

LE Space

A Actor

AF Explosion

=)

m

|| Cancel | -

Compile all |

Exercise 1.11

-

| Greenfoot: asteroids1

Scenaric Edit Controls Help

| @ Scenario Information ‘

space

World

% Space

inherited from Qbject

inherited from Actor

inherited from Mover 4 Actor

void act() _ Explosion 3
int getShotsFired

int get=ShotsFired() —

int getSpeed() _

void setGunReloadTime(int reloadTime) Bullet

= Rocket

i Asteroid

Vector —

4 11} 3

Compile all

| - Act | | = Run | | L) Reset | Speed: 9 |

Exercise 1.11

wn
()
m
]
o
=,
&
T
5
=4
g
=]
]
=
o
5

space

"' Greenfoot: Object Inspector E

4 ™y
rocket : Rocket

13

private int gunReloadTime

)

private int reloadDelayCount

N private Vector acceleration e
N =
private int shotsFired
private GreenfootImage rocket o ok
private GreenfootImage rocketWith. .. o
private Vector movement e ok
private double x 213.0

private double y

W [
oy

int % (hidden)
int v (hidden) |
private int rotation -145 I
World world o 1

| > Ad | | P _ | | 'L'J - | private GreenfootImage image e ok 8 |

Show static fields

Exercise 1.12

M Greenfoot: asteroidsl =AECE X

Scenaric Edit Controls Help

| @ Scenario Information |
space

LN

inkerited from Qbject

inherited from Actor o . :
intrerited from Mover !

Bullet

= Rocket

void act()
int getShotsFired
int getSpeed()

void setGunReloadTime(int reloadTime)

Inspect) Asteroid
Remove

| > Act | | = Fun | | L) Reset | Speed: |J |

Compile all

Exercise 1.12

i ===

& Greenfoot: asteroidsl

| @ Scenario Information

space

M Greenfoot: Method Result ;
-
£

rocket.getSpeed()

returned: _
-

Bullet

3 Asteroid

| - Act | | = Run | | J Reset | Sl U | Compile all

Exercise 1.13

¥

& Greenfoot: asteroidsl

|'1

=

| Greenfoot: Object Inspector

-

private int size

private int stability

asterpid : Asteroid

& Greenfoot: Object Inspector

E Scenario Information

-

private int size

private int stability

asteroid 2 : Asteroid

32 i
32 -

| Greenfoot: Object Inspector

o~

private int size

private int stability

| Show static fields

asteroid 3 : Asteroid

Explosion

Mowver

Bullet

= Rocket

@5 Asteroid

Exercise 1.14

[

| Greenfoot: asteroids1

Scenaric Edit Controls Help

space

-
inherited from Object »

inherited from Actor »

inherited from Mover » B Gree

void act()
int getStability()
void hit{int damaage)

void setSize(int size)

Inspect

Remaove

asteroid.setSize {

A Set the size of this asteroid. Mote that stability is directly
A related to size. Smaller asteroids are less stable.
void setSize(int size)

World

T Space |

& Actor

Explosion

m

Mover

Bullet

= Rocket

~) 5 Asteroid

Ok

|| Cancel |

| >act | | pRun | | @QReset | Speed:

| Compile all

1.10 Source Code

#

" Greenfoot: asteroidsl

=S~

Scenaric Edit Controls Help

@ Scenario Information |

space

m

World

T

Space

m

| Actor

Explosion

Mover

Bullet

new Rocket()

Open editor

: - 2 i 1 Setimage...
M Inspect
A Speed: | J
| - Act | | - Fun | | L) Reset | pee — N

Mew subclass...

Source Code for Rocket

E S . e

Class Edit Tools Options

Undao lCopyl ’F'a.ste] ’Find...] lFind Nextl [Closel [Snurce Code - I
*f

public class Rocket extends Mover

{
private int gunBeleoadTlime:
private int relocadDelayCount:
private Vector acceleration;
private int shotsFired;

m

private GreenfootImage rocket = new GreenfootImage ("rocket.png™):
private GreenfootImage rocketWithThrust = new GreenfootImage ("rocketWithThrust.png™):

f**
* Initilise this rocket.
*f
public Rocket ()
{
gunBeleadTime = 207
reloadDelaylount = 07
acceleration = new Vector({0, 0.3):
increaseSpeed(new Vector(l3, 0.3)):
shotsFired = 0;

f**
* Do what a rocket's gotta do. (Which is: mostly flying akout, and turning,
* accelerating and shooting when the right keys are pressed.)
*f
public wvoid act()
{
move () ;
checkCollisicn(); -

saved

Exercise 1.15

%, Rocket

Class Edit Tools Options

Undo ’Copyl’F'a.ste“Find...”Find Next] [Closel [Source Code
*f

public class Rocket extends Mover

{
private int gunBeloadTime;
private int relocadDelayCount:
private WVector acceleration:
private int shotsFired;

private GreenfootImage rocket = new GreenfootImage ("rocket.png™):
private GreenfcotImage rocketWithThrust = new GreenfcotImage ("rocketWithThrust.png™):

Jx* .
* Initilise this rocket. Change gunReloadTime
*/
public Rocket () from 20 to 5
{
gunBeloadlime = 20;
reloadDelayCount = 05
acceleration = new Vector (0, 0.3):
increaseSpeed (new Vector({l13, 0.3)): initially slowly
shotsFired = 07

‘.’**
* Do what & rocket's gotta do. (Which is: mostly flving about, and turning,
* gccelerating and shooting when the right keys are pressed.)
*/
public void act()
{
move () 7
checkCollision()

m

saved

Exercise 1.15

SR TR L o s

Class Edit Tools Options

[Compilel lUndo] [Copyl ’F'a.ste] [Find...] [Find Next] [Close] [Suurce Code -]

| +/ I

public class Rocket extends Mover

{ |
private int gunReloadlime; h ini lelay betw iri h u
private int reloadDelavyCount:
private Vector acceleration;

m

ber of shots fired.

private int shotsFired;

private Greenfootlmage rocket = new Greenfootlmage ("rocket.png”)s;
private GreenfootImage rocketWithThrust = new GreenfootImage ("rocketWithThrust.png™): L

‘(**
* Imitilise this rocket.
*f
pukblic Rocket()
{
gunReloadlime = 5;
reloadDelayCount = 0;
acceleration = new Vector(0, 0.3);
increaseSpeed (new Vector(l3, 0.3)); // initially slowly drifting
shotsFired = 0;

‘f**
* Do what & rocket's gotta do. (Which is: mostly flying about, and turning,
* accelerating and shooting when the right keys are pressed.)
*/
public wold act()
{
move () ;
checkCollisicon(); -

changed

Exercise 1.15

Class Changed Class Compiled

1.11 Summary

In this chapter, we have seen what Greenfoot scenarios
can look like and how to interact with them. We have
seen how to create objects and how to communicate
with these objects by invoking their methods. Some
methods are commands to objects, while other methods
return information about the object. Parameters are
used to provide additional information to methods, while
return values pass information back to the caller.

Concept Summary

Concept summary

Greenfoot scenarios consist of a set of classes.

Many objects can be created from a class.

Objects have methods. Invoking these performs an action.

The return type of a method specifies what a method call will return.
A method with a void return type does not return a value.

Methods with void return types represent commands; methods with non-void return types
represent questions.

A parameter is a mechanism to pass in additional data to a method.

Parameters and return values have types. Examples of types are int for numbers, and boolean
for trueffalse values.

The specification of a method, which shows its return type, name, and parameters, is called
its signature.

Objects that can be placed into the world are known as actors.

A subclass is a class that represents a specialization of another. In Greenfoot, this is shown
with an arrow in the class diagram.

Every class is defined by source code. This code defines what objects of this class can do.
We can look at the source code by opening the class's editor.

Computers do not understand source code. It needs to be translated to machine code before
it can be executed. This is called compilation.

