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1.1 Getting Started
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Class Hierarchy

Mammals [ [ food() J
drink()

) 4
teach () enroll ()
evaluate() | Teacher Student |[H. study()
prepare_Assign ments()) \submit_Assignments()




Right Click on Wombat

"1 Actor

I

% Wombat |

& Leaf
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Multiple Objects

* We can create
multiple

instances of
same class




Exercise 1.1
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1.3 Interacting with Objects
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Interacting with Objects

Right Click on the Wombat

@ inherited from Object 4 Invoke the Move method
' inherited from Actor » |
void act()

boolean canMove()
void eatlLeaf()
boolean foundLeaf()
int getLeavesEaten
void move()
void setDirection(int direction)
void turnLeft()
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Remove



1.4 Return Types

Greenfoot: Method Resu =

i Test if we can move forward. Return true if we can, false otherwise.
boolean canMove()

wombat_4.canMove() | Inspect |

returned:
et

boolean true




Exercise 1.3
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1.5 Parameters

Greenfoot: Method Call

& Sets the direction we're facing. The direction’ parameter must
& be in the range [0..3].
void setDirection(int direction)

wombat_4.setDirection {
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Exercise 1.5
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Exercise 1.5

Scenario Edit Controls Help

=g

X

wombatWorld

Non-Integer

ﬂ Returns Error
e -

# be in the range [0..3].
void setDirection(int direction)

|

wombat_6.setDirection ( 12,5

possible loss of precision

>

[3) scenario Information

World dasses

World

ol

WombatWorld

" Actor

@ Wombat

& Leaf

Compile all

N



1.6 Greenfoot Execution
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Exercise 1.6

‘ Gréenfoot: leaves-and-wombats @m

| Scenario Edit Controls Help
wombatiorld | [y Scenario Informatn
- World dasses
Wombat Moves toward the Leaves World
/ AE WombatWorld

m

Actor dasses
\[ ’ 4 Actor
ZE @ Wombat

“ ’ & Leaf

V' 4

-

{>A‘t][>Run][OReset] Speed:

Compile all




Exercise 1.6
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Example 1.7
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Exercise 1.8

‘ Greenfoot: Ieav_es—and;yv&mbaﬁ.

|| Scenaric Edit Centrols Help

[2) Scenario Information

wombatWorld
| — World dasses
!. The >Act Execution Control T
Affects All the Womths R T
! Actor dasses
ya] L 4 Actor
i) PN

’ & Leaf

Compile all




Exercise 1.9
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Exercise 1.9

* Act Method
— If we're sitting on a leaf, eat the leaf
— Otherwise, if we can move forward, move forward
— Otherwise, turn left



1.7 A Second Example

M Greenfoot: asteroidsl
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1.8 Understanding the Class Diagram
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1.9 Playing with Asteroids
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1.10 Source Code
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Source Code for Rocket

E S . e

Class Edit Tools Options

Undao lCopyl ’F'a.ste] ’Find...] lFind Nextl [Closel [Snurce Code - I
*f

public class Rocket extends Mover

{
private int gunBeleoadTlime:
private int relocadDelayCount:
private Vector acceleration;
private int shotsFired;

m

private GreenfootImage rocket = new GreenfootImage ("rocket.png™):
private GreenfootImage rocketWithThrust = new GreenfootImage ("rocketWithThrust.png™):

f**
* Initilise this rocket.
*f
public Rocket ()
{
gunBeleadTime = 207
reloadDelaylount = 07
acceleration = new Vector({0, 0.3):
increaseSpeed(new Vector(l3, 0.3)):
shotsFired = 0;

f**
* Do what a rocket's gotta do. (Which is: mostly flying akout, and turning,
* accelerating and shooting when the right keys are pressed.)
*f
public wvoid act()
{
move () ;
checkCollisicn(); -

saved




Exercise 1.15

%, Rocket
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*f

public class Rocket extends Mover

{
private int gunBeloadTime;
private int relocadDelayCount:
private WVector acceleration:
private int shotsFired;

private GreenfootImage rocket = new GreenfootImage ("rocket.png™):
private GreenfcotImage rocketWithThrust = new GreenfcotImage ("rocketWithThrust.png™):

Jx* .
* Initilise this rocket. Change gunReloadTime
*/
public Rocket () from 20 to 5
{
gunBeloadlime = 20;
reloadDelayCount = 05
acceleration = new Vector (0, 0.3):
increaseSpeed (new Vector({l13, 0.3)): initially slowly
shotsFired = 07

‘.’**
* Do what & rocket's gotta do. (Which is: mostly flving about, and turning,
* gccelerating and shooting when the right keys are pressed.)
*/
public void act()
{
move () 7
checkCollision()

m

saved




Exercise 1.15

SR TR L o s
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| +/ I

public class Rocket extends Mover

{ |
private int gunReloadlime; h ini lelay betw iri h u
private int reloadDelavyCount:
private Vector acceleration;

m

ber of shots fired.

private int shotsFired;

private Greenfootlmage rocket = new Greenfootlmage ("rocket.png”)s;
private GreenfootImage rocketWithThrust = new GreenfootImage ("rocketWithThrust.png™): L

‘(**
* Imitilise this rocket.
*f
pukblic Rocket()
{
gunReloadlime = 5;
reloadDelayCount = 0;
acceleration = new Vector(0, 0.3);
increaseSpeed (new Vector(l3, 0.3)); // initially slowly drifting
shotsFired = 0;

‘f**
* Do what & rocket's gotta do. (Which is: mostly flying about, and turning,
* accelerating and shooting when the right keys are pressed.)
*/
public wold act()
{
move () ;
checkCollisicon(); -

changed




Exercise 1.15
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1.11 Summary

In this chapter, we have seen what Greenfoot scenarios
can look like and how to interact with them. We have
seen how to create objects and how to communicate
with these objects by invoking their methods. Some
methods are commands to objects, while other methods
return information about the object. Parameters are
used to provide additional information to methods, while
return values pass information back to the caller.



Concept Summary

Concept summary

Greenfoot scenarios consist of a set of classes.

Many objects can be created from a class.

Objects have methods. Invoking these performs an action.

The return type of a method specifies what a method call will return.
A method with a void return type does not return a value.

Methods with void return types represent commands; methods with non-void return types
represent questions.

A parameter is a mechanism to pass in additional data to a method.

Parameters and return values have types. Examples of types are int for numbers, and boolean
for trueffalse values.

The specification of a method, which shows its return type, name, and parameters, is called
its signature.

Objects that can be placed into the world are known as actors.

A subclass is a class that represents a specialization of another. In Greenfoot, this is shown
with an arrow in the class diagram.

Every class is defined by source code. This code defines what objects of this class can do.
We can look at the source code by opening the class's editor.

Computers do not understand source code. It needs to be translated to machine code before
it can be executed. This is called compilation.



